Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(6): e100383, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24950228

RESUMO

BACKGROUND: Radionuclide- and heavy metal-contaminated subsurface sediments remain a legacy of Cold War nuclear weapons research and recent nuclear power plant failures. Within such contaminated sediments, remediation activities are necessary to mitigate groundwater contamination. A promising approach makes use of extant microbial communities capable of hydrolyzing organophosphate substrates to promote mineralization of soluble contaminants within deep subsurface environments. METHODOLOGY/PRINCIPAL FINDINGS: Uranium-contaminated sediments from the U.S. Department of Energy Oak Ridge Field Research Center (ORFRC) Area 2 site were used in slurry experiments to identify microbial communities involved in hydrolysis of 10 mM organophosphate amendments [i.e., glycerol-2-phosphate (G2P) or glycerol-3-phosphate (G3P)] in synthetic groundwater at pH 5.5 and pH 6.8. Following 36 day (G2P) and 20 day (G3P) amended treatments, maximum phosphate (PO4(3-)) concentrations of 4.8 mM and 8.9 mM were measured, respectively. Use of the PhyloChip 16S rRNA microarray identified 2,120 archaeal and bacterial taxa representing 46 phyla, 66 classes, 110 orders, and 186 families among all treatments. Measures of archaeal and bacterial richness were lowest under G2P (pH 5.5) treatments and greatest with G3P (pH 6.8) treatments. Members of the phyla Crenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria demonstrated the greatest enrichment in response to organophosphate amendments and the OTUs that increased in relative abundance by 2-fold or greater accounted for 9%-50% and 3%-17% of total detected Archaea and Bacteria, respectively. CONCLUSIONS/SIGNIFICANCE: This work provided a characterization of the distinct ORFRC subsurface microbial communities that contributed to increased concentrations of extracellular phosphate via hydrolysis of organophosphate substrate amendments. Within subsurface environments that are not ideal for reductive precipitation of uranium, strategies that harness microbial phosphate metabolism to promote uranium phosphate precipitation could offer an alternative approach for in situ sequestration.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Sedimentos Geológicos/química , Organofosfatos/química , Organofosfatos/metabolismo , Urânio/química , Urânio/metabolismo , Archaea/citologia , Bactérias/citologia , Biodegradação Ambiental , Hidrólise , Solubilidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
2.
PLoS One ; 7(7): e41305, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22815990

RESUMO

Coastal salt marshes are highly sensitive wetland ecosystems that can sustain long-term impacts from anthropogenic events such as oil spills. In this study, we examined the microbial communities of a Gulf of Mexico coastal salt marsh during and after the influx of petroleum hydrocarbons following the Deepwater Horizon oil spill. Total hydrocarbon concentrations in salt marsh sediments were highest in June and July 2010 and decreased in September 2010. Coupled PhyloChip and GeoChip microarray analyses demonstrated that the microbial community structure and function of the extant salt marsh hydrocarbon-degrading microbial populations changed significantly during the study. The relative richness and abundance of phyla containing previously described hydrocarbon-degrading bacteria (Proteobacteria, Bacteroidetes, and Actinobacteria) increased in hydrocarbon-contaminated sediments and then decreased once hydrocarbons were below detection. Firmicutes, however, continued to increase in relative richness and abundance after hydrocarbon concentrations were below detection. Functional genes involved in hydrocarbon degradation were enriched in hydrocarbon-contaminated sediments then declined significantly (p<0.05) once hydrocarbon concentrations decreased. A greater decrease in hydrocarbon concentrations among marsh grass sediments compared to inlet sediments (lacking marsh grass) suggests that the marsh rhizosphere microbial communities could also be contributing to hydrocarbon degradation. The results of this study provide a comprehensive view of microbial community structural and functional dynamics within perturbed salt marsh ecosystems.


Assuntos
Poluição por Petróleo , Áreas Alagadas , Alabama , Ecossistema , Cromatografia Gasosa-Espectrometria de Massas/métodos , Geografia , Sedimentos Geológicos , Golfo do México , Hidrocarbonetos/química , Análise de Sequência com Séries de Oligonucleotídeos , Petróleo/metabolismo , Reação em Cadeia da Polimerase , Rizosfera , Sais/química , Análise de Sequência de DNA
3.
Environ Sci Technol ; 46(16): 8714-22, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22794799

RESUMO

The biotransformation of n-tetradecylbenzyldimethylammonium chloride (C(14)BDMA-Cl), a quaternary ammonium compound (QAC), under aerobic conditions by an enriched microbial community growing on benzalkonium chlorides (BACs) was investigated. Biotransformation of C(14)BDMA-Cl commenced with cleavage of the C(alkyl)-N bond and formation of benzyldimethylamine (BDMA). BDMA was further degraded, but in contrast to a previously reported BAC biotransformation pathway, neither benzylmethylamine (BMA) nor benzylamine (BA) was detected as a BDMA biotransformation product. Kinetic assays further confirmed that BMA and BA were not intermediates of C(14)BDMA-Cl transformation by the enriched community. Thus, BDMA is thought to be transformed to dimethylamine and benzoic acid via debenzylation. The biomass-normalized rate of C(14)BDMA-Cl biotransformation was 0.09 µmol/[mg of volatile suspended solids (VSS)·h]. The Microtox acute toxicity EC(50) value of BDMA was 500 times higher than that of C(14)BDMA-Cl. Thus, the aerobic biotransformation of C(14)BDMA-Cl to BDMA results in substantial toxicity reduction. Phylogenetic analysis of Bacteria diversity indicated that the majority of the sequenced clones (98% of the clone library) belonged to the genus Pseudomonas.


Assuntos
Pseudomonas/metabolismo , Compostos de Amônio Quaternário/metabolismo , Aerobiose , Biotransformação , Filogenia , Pseudomonas/classificação , Pseudomonas/genética
4.
J Bacteriol ; 194(11): 3020-1, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22582378

RESUMO

Rahnella aquatilis CIP 78.65 is a gammaproteobacterium isolated from a drinking water source in Lille, France. Here we report the complete genome sequence of Rahnella aquatilis CIP 78.65, the type strain of R. aquatilis.


Assuntos
Água Potável/microbiologia , Genoma Bacteriano , Rahnella/genética , Sequência de Bases , França , Dados de Sequência Molecular , Rahnella/classificação , Rahnella/isolamento & purificação
5.
J Hazard Mater ; 213-214: 498-501, 2012 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-22377376

RESUMO

Positron emission tomography (PET) provides spatiotemporal monitoring in a nondestructive manner and has higher sensitivity and resolution relative to other tomographic methods. Therefore, this technology was evaluated for its application to monitor in situ subsurface bacterial activity. To date, however, it has not been used to monitor or image soil microbial processes. In this study, PET imaging was applied as a "proof-of-principle" method to assess the feasibility of visualizing a radiotracer labeled subsurface bacterial strain (Rahnella sp. Y9602), previously isolated from uranium contaminated soils and shown to promote uranium phosphate precipitation. Soil columns packed with acid-purified simulated mineral soils were seeded with 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)FDG) labeled Rahnella sp. Y9602. The applicability of [(18)F]fluoride ion as a tracer for measuring hydraulic conductivity and (18)FDG as a tracer to identify subsurface metabolically active bacteria was successful in our soil column studies. Our findings indicate that positron-emitting isotopes can be utilized for studies aimed at elucidating subsurface microbiology and geochemical processes important in contaminant remediation.


Assuntos
Microbiologia/instrumentação , Tomografia por Emissão de Pósitrons/métodos , Microbiologia do Solo , Absorção , Poluição Ambiental/análise , Fluordesoxiglucose F18 , Marcação por Isótopo/métodos , Compostos Radiofarmacêuticos , Rahnella/metabolismo , Software , Poluentes do Solo
6.
J Bacteriol ; 194(8): 2113-4, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22461551

RESUMO

Rahnella sp. strain Y9602 is a gammaproteobacterium isolated from contaminated subsurface soils that is capable of promoting uranium phosphate mineralization as a result of constitutive phosphatase activity. Here we report the first complete genome sequence of an isolate belonging to the genus Rahnella.


Assuntos
Genoma Bacteriano , Metais/química , Radioisótopos/química , Rahnella/genética , Microbiologia do Solo , Sequência de Bases , Dados de Sequência Molecular , Rahnella/classificação , Poluentes do Solo/química
7.
Appl Environ Microbiol ; 75(21): 6745-56, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19749061

RESUMO

Vibrio parahaemolyticus is a pathogenic marine bacterium that is the main causative agent of bacterial seafood-borne gastroenteritis in the United States. An increase in the frequency of V. parahaemolyticus-related infections during the last decade has been attributed to the emergence of an O3:K6 pandemic clone in 1995. The diversity of the O3:K6 pandemic clone and its serovariants has been examined using multiple molecular techniques including multilocus sequence analysis, pulsed-field gel electrophoresis, and group-specific PCR analysis. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has become a powerful tool for rapidly distinguishing between related bacterial species. In the current study, we demonstrate the development of a whole-cell MALDI-TOF MS method for the distinction of V. parahaemolyticus from other Vibrio spp. We identified 30 peaks that were present only in the spectra of the V. parahaemolyticus strains examined in this study that may be developed as MALDI-TOF MS biomarkers for identification of V. parahaemolyticus. We detected variation in the MALDI-TOF spectra of V. parahaemolyticus strains isolated from different geographical locations and at different times. The MALDI-TOF MS spectra of the V. parahaemolyticus strains examined were distinct from those of the other Vibrio species examined including the closely related V. alginolyticus, V. harveyi, and V. campbellii. The results of this study demonstrate the first use of whole-cell MALDI-TOF MS analysis for the rapid identification of V. parahaemolyticus.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Vibrio parahaemolyticus/química , Vibrio parahaemolyticus/isolamento & purificação , Análise por Conglomerados , Impressões Digitais de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Eletroforese em Gel de Campo Pulsado , Genótipo , Humanos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Estados Unidos , Vibrioses/diagnóstico
8.
Environ Microbiol ; 9(12): 3122-33, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17991039

RESUMO

In this study, the immobilization of toxic uranium [U(VI)] mediated by the intrinsic phosphatase activities of naturally occurring bacteria isolated from contaminated subsurface soils was examined. The phosphatase phenotypes of strains belonging to the genera, Arthrobacter, Bacillus and Rahnella, previously isolated from subsurface soils at the US Department of Energy's (DOE) Oak Ridge Field Research Center (ORFRC), were determined. The ORFRC represents a unique, extreme environment consisting of highly acidic soils with co-occurring heavy metals, radionuclides and high nitrate concentrations. Isolates exhibiting phosphatase-positive phenotypes indicative of constitutive phosphatase activity were subsequently tested in U(VI) bioprecipitation assays. When aerobically grown in synthetic groundwater (pH 5.5) amended with 10 mM glycerol-3-phosphate (G3P), phosphatase-positive Bacillus and Rahnella spp. strains Y9-2 and Y9602 liberated sufficient phosphate to precipitate 73% and 95% of total soluble U added as 200 microM uranyl acetate respectively. In contrast, an Arthrobacter sp. X34 exhibiting a phosphatase-negative phenotype did not liberate phosphate from G3P or promote U(VI) precipitation. This study provides the first evidence of U(VI) precipitation via the phosphatase activity of naturally occurring Bacillus and Rahnella spp. isolated from the acidic subsurface at the DOE ORFRC.


Assuntos
Bacillus , Fosfatos/química , Rahnella , Microbiologia do Solo , Poluentes Radioativos do Solo/química , Urânio/química , Aerobiose , Bacillus/efeitos dos fármacos , Bacillus/enzimologia , Bacillus/genética , Bacillus/isolamento & purificação , Biodegradação Ambiental , Precipitação Química , Farmacorresistência Bacteriana , Metais/farmacologia , Dados de Sequência Molecular , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Rahnella/efeitos dos fármacos , Rahnella/enzimologia , Rahnella/genética , Rahnella/isolamento & purificação , Análise de Sequência de DNA , Poluentes do Solo/metabolismo , Poluentes Radioativos do Solo/metabolismo , Poluentes Radioativos da Água/metabolismo
9.
Environ Sci Technol ; 41(16): 5701-7, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17874776

RESUMO

Uranium contamination is an environmental concern at the Department of Energy's Field Research Center in Oak Ridge, Tennessee. In this study, we investigated whether phosphate biomineralization, or the aerobic precipitation of U(VI)-phosphate phases facilitated by the enzymatic activities of microorganisms, offers an alternative to the more extensively studied anaerobic U(VI) bioreduction. Three heterotrophic bacteria isolated from FRC soils were studied for their ability to grow and liberate phosphate in the presence of U(VI) and an organophosphate between pH 4.5 and 7.0. The objectives were to determine whether the strains hydrolyzed sufficient phosphate to precipitate uranium, to determine whether low pH might have an effect on U(VI) precipitation, and to identify the uranium solid phase formed during biomineralization. Two bacterial strains hydrolyzed sufficient organophosphate to precipitate 7395% total uranium after 120 h of incubation in simulated groundwater. The highest rates of uranium precipitation and phosphatase activity were observed between pH 5.0 and 7.0. EXAFS spectra identified the uranyl phosphate precipitate as an autunite/meta-autunite group mineral. The results of this study indicate that aerobic heterotrophic bacteria within a uranium-contaminated environment that can hydrolyze organophosphate, especially in low pH conditions, may play an important role in the bioremediation of uranium.


Assuntos
Bactérias/enzimologia , Bactérias/isolamento & purificação , Fosfoproteínas Fosfatases/metabolismo , Urânio/metabolismo , Poluentes Radioativos da Água/metabolismo , Biodegradação Ambiental , Precipitação Química , Contagem de Colônia Microbiana , Água Doce/química , Glicerofosfatos , Solo , Solubilidade , Análise Espectral , Titulometria
10.
Environ Microbiol ; 8(10): 1783-96, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16958759

RESUMO

In this study, ribosomes and genomic DNA were extracted from three sediment depths (0-2, 6-8 and 10-12 cm) to determine the vertical changes in the microbial community composition and identify metabolically active microbial populations in sediments obtained from an active seafloor mud volcano site in the northern Gulf of Mexico. Domain-specific Bacteria and Archaea 16S polymerase chain reaction primers were used to amplify 16S rDNA gene sequences from extracted DNA. Complementary 16S ribosomal DNA (crDNA) was obtained from rRNA extracted from each sediment depth that had been subjected to reverse transcription polymerase chain reaction amplification. Twelve different 16S clone libraries, representing the three sediment depths, were constructed and a total of 154 rDNA (DNA-derived) and 142 crDNA (RNA-derived) Bacteria clones and 134 rDNA and 146 crDNA Archaea clones obtained. Analyses of the 576 clones revealed distinct differences in the composition and patterns of metabolically active microbial phylotypes relative to sediment depth. For example, epsilon-Proteobacteria rDNA clones dominated the 0-2 cm clone library whereas gamma-Proteobacteria dominated the 0-2 cm crDNA library suggesting gamma to be among the most active in situ populations detected at 0-2 cm. Some microbial lineages, although detected at a frequency as high as 9% or greater in the total DNA library (i.e. Actinobacteria, alpha-Proteobacteria), were markedly absent from the RNA-derived libraries suggesting a lack of in situ activity at any depth in the mud volcano sediments. This study is one of the first to report the composition of the microbial assemblages and physiologically active members of archaeal and bacterial populations extant in a Gulf of Mexico submarine mud volcano.


Assuntos
Archaea/genética , Bactérias/genética , Sedimentos Geológicos/microbiologia , Microbiologia do Solo , Archaea/metabolismo , Bactérias/metabolismo , Sequência de Bases , Biblioteca Gênica , Dados de Sequência Molecular , Oceanos e Mares , Filogenia , Polimorfismo de Fragmento de Restrição , RNA Arqueal/química , RNA Arqueal/genética , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA
11.
Appl Environ Microbiol ; 72(5): 3111-8, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16672448

RESUMO

Aerobic heterotrophs were isolated from subsurface soil samples obtained from the U.S. Department of Energy's (DOE) Field Research Center (FRC) located at Oak Ridge, Tenn. The FRC represents a unique, extreme environment consisting of highly acidic soils with co-occurring heavy metals, radionuclides, and high nitrate concentrations. Four hundred isolates obtained from contaminated soil were assayed for heavy metal resistance, and a smaller subset was assayed for tolerance to uranium. The vast majority of the isolates were gram-positive bacteria and belonged to the high-G+C- and low-G+C-content genera Arthrobacter and Bacillus, respectively. Genomic DNA from a randomly chosen subset of 50 Pb-resistant (Pb(r)) isolates was amplified with PCR primers specific for P(IB)-type ATPases (i.e., pbrA/cadA/zntA). A total of 10 pbrA/cadA/zntA loci exhibited evidence of acquisition by horizontal gene transfer. A remarkable dissemination of the horizontally acquired P(IB)-type ATPases was supported by unusual DNA base compositions and phylogenetic incongruence. Numerous Pb(r) P(IB)-type ATPase-positive FRC isolates belonging to the genus Arthrobacter tolerated toxic concentrations of soluble U(VI) (UO(2)(2+)) at pH 4. These unrelated, yet synergistic, physiological traits observed in Arthrobacter isolates residing in the contaminated FRC subsurface may contribute to the survival of the organisms in such an extreme environment. This study is, to the best of our knowledge, the first study to report broad horizontal transfer of P(IB)-type ATPases in contaminated subsurface soils and is among the first studies to report uranium tolerance of aerobic heterotrophs obtained from the acidic subsurface at the DOE FRC.


Assuntos
Adenosina Trifosfatases/genética , Arthrobacter/genética , Bacillus/genética , Transferência Genética Horizontal , Metais Pesados/farmacologia , Microbiologia do Solo , Poluentes do Solo/farmacologia , Adenosina Trifosfatases/metabolismo , Arthrobacter/efeitos dos fármacos , Arthrobacter/enzimologia , Bacillus/efeitos dos fármacos , Bacillus/enzimologia , DNA Bacteriano/análise , DNA Ribossômico/análise , Farmacorresistência Bacteriana , Chumbo/farmacologia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , RNA Ribossômico 16S , Análise de Sequência de DNA , Urânio/farmacologia
12.
Appl Environ Microbiol ; 71(6): 3235-47, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15933026

RESUMO

The characterization of microbial assemblages within solid gas hydrate, especially those that may be physiologically active under in situ hydrate conditions, is essential to gain a better understanding of the effects and contributions of microbial activities in Gulf of Mexico (GoM) hydrate ecosystems. In this study, the composition of the Bacteria and Archaea communities was determined by 16S rRNA phylogenetic analyses of clone libraries derived from RNA and DNA extracted from sediment-entrained hydrate (SEH) and interior hydrate (IH). The hydrate was recovered from an exposed mound located in the northern GoM continental slope with a hydrate chipper designed for use on the manned-submersible Johnson Sea Link (water depth, 550 m). Previous geochemical analyses indicated that there was increased metabolic activity in the SEH compared to the IH layer (B. N. Orcutt, A. Boetius, S. K. Lugo, I. R. Macdonald, V. A. Samarkin, and S. Joye, Chem. Geol. 205:239-251). Phylogenetic analysis of RNA- and DNA-derived clones indicated that there was greater diversity in the SEH libraries than in the IH libraries. A majority of the clones obtained from the metabolically active fraction of the microbial community were most closely related to putative sulfate-reducing bacteria and anaerobic methane-oxidizing archaea. Several novel bacterial and archaeal phylotypes for which there were no previously identified closely related cultured isolates were detected in the RNA- and DNA-derived clone libraries. This study was the first phylogenetic analysis of the metabolically active fraction of the microbial community extant in the distinct SEH and IH layers of GoM gas hydrate.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Ecossistema , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Água do Mar/microbiologia , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Clonagem Molecular , DNA Arqueal/análise , DNA Arqueal/genética , DNA Arqueal/isolamento & purificação , DNA Bacteriano/análise , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Biblioteca Gênica , Hidrocarbonetos/metabolismo , Dados de Sequência Molecular , Filogenia , RNA Arqueal/análise , RNA Arqueal/genética , RNA Arqueal/isolamento & purificação , RNA Bacteriano/análise , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
13.
Appl Environ Microbiol ; 70(11): 6855-64, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15528553

RESUMO

The bacterial and temperature factors leading to yellow blotch/band disease (YBD), which affects the major reef-building Caribbean corals Montastrea spp., have been investigated. Groups of bacteria isolated from affected corals and inoculated onto healthy corals caused disease signs similar to those of YBD. The 16S rRNA genes from these bacteria were sequenced and found to correspond to four Vibrio spp. Elevating the water temperature notably increased the rate of spread of YBD on inoculated corals and induced greater coral mortality. YBD-infected corals held at elevated water temperatures had 50% lower zooxanthella densities, 80% lower division rates, and a 75% decrease in chlorophyll a and c2 pigments compared with controls. Histological sections indicated that the algal pyrenoid was fragmented into separate segments, along with a reconfiguration and swelling of the zooxanthellae, as well as vacuolization. YBD does not appear to produce the same physiological response formerly observed in corals undergoing temperature-related bleaching. Evidence indicates that YBD affects primarily the symbiotic algae rather than coral tissue.


Assuntos
Antozoários/microbiologia , Clorofila/metabolismo , Temperatura , Vibrio/classificação , Vibrio/patogenicidade , Animais , Região do Caribe , DNA Ribossômico/análise , Eucariotos/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose , Vibrio/genética
14.
Appl Environ Microbiol ; 70(9): 5447-58, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15345432

RESUMO

In this study, the composition of the metabolically active fraction of the microbial community occurring in Gulf of Mexico marine sediments (water depth, 550 to 575 m) with overlying filamentous bacterial mats was determined. The mats were mainly composed of either orange- or white-pigmented Beggiatoa spp. Complementary 16S ribosomal DNA (crDNA) was obtained from rRNA extracted from three different sediment depths (0 to 2, 6 to 8, and 10 to 12 cm) that had been subjected to reverse transcription-PCR amplification. Domain-specific 16S PCR primers were used to construct 12 different 16S crDNA libraries containing 333 Archaea and 329 Bacteria clones. Analysis of the Archaea clones indicated that all sediment depths associated with overlying orange- and white-pigmented microbial mats were almost exclusively dominated by ANME-2 (95% of total Archaea clones), a lineage related to the methanogenic order Methanosarcinales. In contrast, bacterial diversity was considerably higher, with the dominant phylotype varying by sediment depth. An equivalent number of clones detected at 0 to 2 cm, representing a total of 93%, were related to the gamma and delta classes of Proteobacteria, whereas clones related to delta-Proteobacteria dominated the metabolically active fraction of the bacterial community occurring at 6 to 8 cm (79%) and 10 to 12 cm (85%). This is the first phylogenetics-based evaluation of the presumptive metabolically active fraction of the Bacteria and Archaea community structure investigated along a sediment depth profile in the northern Gulf of Mexico, a hydrocarbon-rich cold-seep region.


Assuntos
Água do Mar/microbiologia , Thiotrichaceae/isolamento & purificação , Sequência de Bases , Primers do DNA , Sedimentos Geológicos/microbiologia , México , Dados de Sequência Molecular , Filogenia , Polimorfismo de Fragmento de Restrição , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Thiotrichaceae/classificação , Thiotrichaceae/genética , Thiotrichaceae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...